Locating specific moments within long videos (20-120 minutes) presents a significant challenge, akin to finding a needle in a haystack. Adapting existing short video (5-30 seconds) grounding methods to this problem yields poor performance. Since most real life videos, such as those on YouTube and AR/VR, are lengthy, addressing this issue is crucial. Existing methods typically operate in two stages- clip retrieval and grounding. However, this disjoint process limits the retrieval module’s fine-grained event understanding, crucial for specific moment detection. We propose RGNet which deeply integrates clip retrieval and grounding into a single network capable of processing long videos into multiple granular levels, e.g., clips and frames. Its core component is a novel transformer encoder, RG-Encoder, that unifies the two stages through shared features and mutual optimization. The encoder incorporates a sparse attention mechanism and an attention loss to model both granularity jointly. Moreover, we introduce a contrastive clip sampling technique to mimic the long video paradigm closely during training. RGNet surpasses prior methods, showcasing state-of-the-art performance on long video temporal grounding (LVTG) datasets MAD and Ego4D.